Indian Statistical Institute, Bangalore B. Math (II), First semester 2017-2018 End-Semester Examination : Statistics (I) Maximum Score 60

Duration: 3 Hours

1. Define $\rho_{_{YY}}$ the correlation coefficient between X and Y.

Date: 20-11-2017

Let F be distribution function of a continuous random variable. Let X_1, X_2, \dots, X_n be a random sample from F. Consider real numbers $a_0, a_1, a_2, \dots, a_{k-1}, a_k, k > 1$, such that $-\infty = a_0 < a_1 < \dots < a_{k-1} < a_k = \infty$. Define $Y_j = \#\{i : X_i \in (a_{j-1}, a_j]\}; 1 \le j \le k-1$ and $Y_k = \#\{i : X_i \in (a_{k-1}, a_k)\}$. Find $\rho_{Y_iY_j}$, the correlation coefficient between Y_i and Y_j ; $1 \le i < j \le k$.

$$[2+8=10]$$

2. In the regression framework $y_i = \beta x_i + \varepsilon_i$, $1 \le i \le n$, given $\boldsymbol{x} = (x_1, x_2, \cdots, x_n)$ the errors ε_i are *iid* $N(0, \sigma^2)$. Obtain *least squares estimator for* β . Obtain an unbiased estimator $\widehat{\sigma}^2_{\text{LSE}}$ for σ^2 based on sum of squares of residuals. Also obtain $\widehat{\sigma}^2_{\text{MLE}}$, maximum likelihood estimator (MLE) for σ^2 . Does $\widehat{\sigma}^2_{\text{MLE}}$ agree with $\widehat{\sigma}^2_{\text{LSE}}$?

[5+4+6+1=16]

3. Let X_1, X_2, \dots, X_n be a random sample from $N(0, \sigma^2)$. Consider the hypothesis testing problem

$$H_0: \sigma^2 = \sigma_0^2$$
 versus $H_1: \sigma^2 \neq \sigma_0^2$.

Let $Y = a \sum_{i=1}^{m} X_i + b \sum_{i=m+1}^{n} X_i$, where a, b are real numbers, at least one of them being nonzero. Obtain a *statistic* W as a function of Y that can work as an unbiased estimator for σ^2 . Obtain the distribution of W. Develop, explaining the heuristics, a test based on W for the above problem.

$$[3+5+6=14]$$

4. Consider random variable X with probability density function (pdf) $f(x|\alpha, \lambda, \delta, k, \theta)$; where $\alpha > 0, \lambda > 0, \delta > 0, k > 0$, that is proportional to

$$g(x|\alpha,\lambda,\delta,k,\theta) = \left(\frac{x-\theta}{\delta}\right)^{\alpha k-1} \exp\left[-\lambda \left(\frac{x-\theta}{\delta}\right)^k\right] I_{[\theta,\infty)}(x) \,.$$

- (a) For k = 1 obtain $E(X^2)$.
- (b) For k = 1 and known δ, θ obtain method of moments (MOM) estimators for α and λ .

(c) For $\alpha = 11$, and known $\lambda, \delta, k, \theta$ how would you draw observations on X using a Direct Method?

$$[(2+6)+8+8=24]$$